
Liam Cassidy, Saul Sparber, Drew Zeiba

EMID MUS 66/Lehrman

Jazz Hand(s) Mark II

The Concept:

 We wanted an instrument that was immediately playable and intuitive, but still offered a 

degree of control, something that anyone —musician or otherwise— could make sound good.  

We also wanted an instrument with a lot of 

performability, insomuch that it would show to an 

audience the effort of the performer in a one-to-one 

relation with the sounds being generated.  We thus set 

out to design a musical glove.  We intended for the 



fingertips to play scalar notes with velocity, and we wanted the wrists to control properties like 

modulation or pitch bend.  We also had hopes of incorporating LEDs to add to the excitement, as 

well as an additional hand controller for even more options.  This instrument would be easy to 

pick up and play naturally, but offer a wide range of control and not confine itself to any sound 

set or type.  Playing can be best compared to a piano that can only play a fixed scale (making the 

rhythm and patch choice all the more important), however this is largely because of 

programming design choices as this instrument is highly adaptable.

 After our first version we realized the impracticability of two hands.  We have since 

added a game-controller style board with buttons and a joystick to add additional control that is 

mounted on the Arduino directly.

 Our final major addition was the inclusion of a DJ-style control option, which has its own 

patch in MaxMSP and Reason that allows the hands to trigger sample loops, opening up an entire 

new dynamic of playability to our instrument.

Software:

 The software has been simplified and made significantly more modular for this second 

iteration.  Given the original design, the software 

built in MaxMSP takes in the button values on the 

gamepad and controls a slider that modifies 

octave shift (left shifts down, right shifts up).  

There is a series of conditionals attached these 

triggers, however they are unimportant to an 

abstracted understanding of the functionality.  



This then relates to a list in 8 essentially 

identical components of the patch by effecting 

which element of a list of number values is 

activated on a button press (using a toggle).  

The proper number is found given the octave 

passed in and the zl mth object.  These 

numbers in turn correspond to notes that are 

sent as noteouts from MaxMSP to Reason.  

 The velocity is determined by a value derived from the analog-in corresponding to a force 

sensing resistor on the finger.  Math is done on this to get a useful range of numbers and its 



output is restricted to 10-127.  We chose 10 as the lowest value so that in the case of a non-

function FSR a button press would always play a note.  We didn’t end up implementing this on 

most of the fingers because we couldn’t get the programming down for a really effective use of 

them (given the issue of the time between button presses and FSR presses), so we set velocity 

defaults of 90.  We attempted to normalize the FSR value using the logarithmic scale object but 

found it difficult and generally ineffective, so instead we placed in values and operations that 

worked best to normalize each FSR (because not all were quite the same) given normal play.  

This also helps dilute some of the noise generated by the FSRs.

 There are other patch components such as a key shifter operated by a counter, slider and 

fixed value of 11 attached to a bang.  Since Liam wrote a number of really impressive Reason 

patches including found samples and the like there is also a patch changer that functions similar 

to the before-mentioned key shifter but with a list of values corresponding to the patch number 

and with a zl mth function.

 There is also a bend sensor system that works similar to the FSR system but instead 

passes information to a midi controller value (like pitch bend or mod) and uses some functions to 

normalize the values.  We didn’t end up implementing the bend sensor in the second iteration 

(though it is functional) because the analog joystick offered far better control.

 We also had functions that also utilized lists and a route object to switch between major 

and minor keys, as well as patches (this part also using a slider).

 We used Tom’s Arduino patch to activate and pass in the data from the Arduino board, 

and this, like many important components of the program functionality, are loaded through a 

load bang.



 The Arduino Mega software/firmware was Tom’s.

Sound design:

 Liam took charge of sound design and made some fantastic patches, largely composed of 

found samples or from unusual instruments.  These 

include: piano, “dub with thirds,” organ arpeggios, 

synth brass, rave chords, glass, “sample mania” (self 

explanatory), and glass drums.  In “dub with thirds” 

Liam used several subtractor modules coupled with 

reverb to create an ethereal synth patch. In Synth brass 

Liam ran a brass instrument device through distortion 

and reverb and then coupled it with a subtractor synth based on saw waves. The result is a 

powerful brass sound that could be used in electronic music or even film scoring. The most 

interesting patch turned out to be sample mania. Liam sampled various objects around the Tufts 

campus. These sounds are combined to make a drum kit out of natural sounds. Each sample was 

processed in the Peak Pro software and Protools. The samples were put into multiple NN19 

samplers and spread through every octave to ensure 

playability no matter the octave. In addition reverb and 

delay were routed through the sends and returns of the 

internal mixer to give more space and character to the 

sounds. These sounds prove how this type of playing 

mechanics is so versatile and works with typical piano-



type sounds, unusual synth sounds, or percussive sounds.  It also means that the Jazz Hands can 

be accessible to a variety of types of players and used in many musical settings.

Hardware:

 The Jazz Hands is a glove as well as a gamepad and two additional buttons.  The FSRs 

are mounted below the buttons, paired together (a mounting based on lessons learned with the 

instrument's first iteration).  We also wished to add LEDs but it was not realistic given the time.  

Each of these components (buttons/FSRs) were put into two wires based off their terminals, one 

of which was then split into two additional wires.  We color coded these for simplicity and used a 

light gauge of wire to increase flexibility.  On one of these ends a resistor was added (1kΩ for the 

buttons, 22kΩ for the FSRs, 22kΩ for the bend sensors) and these lines eventually went to 

ground.  The other half of this split was sent to the appropriate analog or digital port.  The 

remaining terminals were sent to a five volt source.  The wiring was combined together in 

various ways.  All 5V analogs were wired together, as were the digitals, meaning 2 wires instead 

of 11.  The grounds are all compressed onto a breadboard since the resistors had been built into 

the wiring.  This mess of cables was all attached to a ribbon cable (carefully labeled of course) to 

help neaten the situation.  The wires were taped and tied and mounted on the glove for neatness 

and to increase flexibility.  

 



 We also added a game controller and two additional buttons on a breadboard.  The game-

controller has a PCB so there weren’t really any additions needed, though Tom needed to make 

some firmware modifications to account for the use of the Arduino’s built in resistors.  The 

analog stick controls pitch-bend and a second parameter (such as LFO or mod).  This is 

especially interesting on the drum patches, giving us pitched percussion.  The four buttons 

control octave switches, key switching, and patch switching.  The two additional buttons (those 

on the breadboard) act as momentary buttons to add the rest of the scale beyond the available 

fingering and a major/minor switch.  This makes the glove hugely playable and complex, yet still 

simple to pick up and play for the less musically inclined.

 The components were mounted to the outside  of the glove (except for the bend sensor) 

because putting them inside would have made the gloves unwearable.

 We chose to use buttons and FSRs to have redundancy and a system in which we knew 

the note would be consistently triggered (momentary buttons tend to be more reliable sensors 

than FSRs).

 The Arduino Mega was our microcontroller, which is an incredibly robust system 

however we did have some seemingly dead ports.  The Mega was chosen for its large number of 

analog ports.  

Issues:

 The most obvious issue you can notice when you look at the Jazz Hands is that there’s 

only one hand.  After what we learned from the first try at the instrument, we decided to stick 

with one hand but design an instrument understanding it would be one glove and one hand 



modifying the playability.  This worked really well and actually opened up a lot of control and 

tons of options.  We also moved much more quickly the second time around which meant a far 

less buggy instrument.  Also the FSRs were terribly flimsy, ripping and tearing, and they gave 

inconsistent data (compared to one another, that is), though a high resistance improved this.  This 

complex wiring and lack of time is why we decided against the LEDs (functionality was more 

important than looks).  After completing this second glove we definitely have a better 

understanding of circuit design and the challenges involved, as well as troubleshooting physical 

systems that will be infinitely helpful in any future projects.  Luckily software was not a major 

issue for us and neither was sound design.  Our teams hardware skills definitely improved and I 

think we made a really good instrument that offered a lot of options given our limitations.

Roles:

 Liam: Programming, sound design

 Saul: Hardware, some programming

 Drew: Hardware, some programming

Doing it again:

 Building another iteration of the gloves was a much smoother, more elegant looking 

project that went much more quickly.  Using thinner gauge wires also made a huge usability 

difference.  Definitely solving the problems of effectively mounting the controls to the garment, 

and doing so in a visually appealing way, would be nice.  Finding a way to simplify everything 

would be good, however FSRs still seem to inconsistent as a way of triggering notes exclusively 



although it would mean nearly half the wiring.  It is definitely a tradeoff between complexity and 

efficacy.  The FSR programming is also very complex given the timing and it would be nice to 

figure out an effective way to handle that.  However, complexity in and of itself is dangerous.  

Also having a secondary hand controller would be nice for more dynamic, active playability.  

Working out the ergonomics and perfecting the playability would be a good way to advance the 

product, too.


